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A significant fraction of pathogens known to infect humans originate in non-human (zoonotic) hosts 
(Taylor, Latham, and Woolhouse 2001), and new and emerging pathogens continue to spill over into the 
human population more frequently at an alarming rate (e.g., SARS, MERS, Cholera, etc.). The recent 
outbreaks of Ebola virus in West Africa and the ongoing SARS-CoV-2 pandemic demonstrate the need 
for rapid and reliable assessments of viral phenotype information to help inform scientists and policy 
makers how best to control the spread of disease. Further understanding of the virus pathogenic 
evolutionary space and potential trajectory could guide appropriate control measures to limit the spread of 
a new virus throughout the local and global human population. 

 

Once a viral disease begins to circulate, reliable diagnostics, protective vaccines and therapeutic 
antibodies are essential tools for preventing, monitoring, and managing disease spread. However, the 
efficacy of these tools can be diminished by mutations in viral genomes (as has been observed in the 
ongoing pandemic), and the delay between the emergence of new viral strains and redesign of vaccines 
and diagnostics allows for continued viral transmission. Given the combinatorial explosion of potential 
mutations that could enable a virus to “escape” diagnostics, vaccines and antibodies, and the high cost of 
biomedical research, it is essential to focus countermeasure development efforts only on viral strains that 
pose the highest risk to society. Towards this end, the questions we ask are: Is it possible to predict the 
most likely evolutionary trajectory of circulating genomes and anticipate novel variants before they 
emerge? Is it possible to assess the risk of future variants by computationally predicting key virulence 
determinants and exploring the evolutionary space for pathogenicity? 

 

The ability to answer these questions hinges on our ability to predict viral phenotype (e.g., the physical 
properties of a virus) from viral genotype (e.g., the genome sequence of a virus). Understanding the 
dependence of phenotype on genotype is a longstanding, “grand challenge” problem in biology. Thanks to 
recent progress in machine learning (ML), protein structure prediction and the accumulation of large 
biological datasets, the field of genotype to phenotype prediction appears poised for rapid progress. In 
particular, the large number of SARS-CoV-2 genome sequences (> 107) provides an unprecedented 
catalog of viral genotypes. While many challenges will need to be overcome, the DOE national 
laboratories are well positioned to make significant contributions to solving the problem of predicting 
phenotype from genotype. 

 
We propose to utilize ML and high-throughput mutational data to solve the problem. As a pilot project to 
test the feasibility of this approach, we developed three neural network models with a training data set 
generated from a deep mutational scanning (DMS) library. DMS is a recently developed high-throughput 
technology that can generate >105 random mutations (Fowler and Fields 2014). It has been applied to 



SARS-CoV-2 receptor binding domain (RBD) to generate 116,257 unique mutated RBD sequences with 
linked expression levels and binding kinetics to the human receptor protein of the virus (ACE2) (Starr et 
al. 2020). Follow up studies have also measured the neutralization antibody (nAb) binding kinetics of the 
mutated sequences (Greaney et al. 2021).  
 
We have developed a one-hot encoded, densely connected NN as the proof-of-concept test. This simple 
model was able to predict fairly accurately the RBD expression and binding to ACE2 (R2 = 0.76). It only 
takes less than a second for the model to predict the effect of an arbitrary mutation, regardless of the 
combinatorial complexity, on a consumer PC. Major limitations of the current feature set in such a 
densely connected NN includes lack of biochemical property of RBD, including charge of the amino 
acids, sequence, and 3-D structure of the protein and many others. Recently, principal component analysis 
of amino acid biochemical properties and graph neural network (GNN) to learn protein properties have 
been combined to predict antibody binding and enzyme activities in five proteins (Gelman et al. 2021). 
Using a similar approach, we have developed a GNN model to study RBD and are currently evaluating 
the model. This model may also provide a mechanism to explore the RBD pathogenic evolutionary space 
computationally.  
 
Combining DMS and deep learning, we can predict the mutational effects of SARS-CoV-2 RBD, both in 
its expression and binding to the ACE2 receptor. We have also identified methods to accommodate the 
biochemical properties of amino acids, sequence, and 3-D protein structural information. We are working 
on evaluating different ML models and will deploy either the best model or an ensemble of models to our 
existing SARS-CoV-2 sequence monitoring workflow, which synchronizes all the submitted SARS-CoV-
2 sequences from GISAID and NIH daily. The upgraded workflow will be able to rank the latest 
mutations based on potential threat level.  
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